
rpolation between the values $B(r)$, where $i^{2}=-1$

$$
\theta(w)=\left(p e^{w i}+q\right)^{s}=\sum_{r=0}^{r=s} B(r) e^{r w i}
$$

erminology of Laplace, $\theta(w)$ is the generating functhe sequence $B(r)$.
shall first show that $B_{0}(x)=B(m)$ when x is a integer m. To prove this, substitute $\theta(w)$ from I) and integrate. This gives
$\sum_{r=0}^{r=s} B(r) \frac{\sin (r-x) \pi}{(r-x) \pi}$
$B(0) \frac{\sin (-x \pi)}{-x \pi}+B(1) \frac{\sin (1-x) \pi}{(1-x) \pi}$

$$
+\cdots+B(s) \frac{\sin (s-x) \pi}{(s-x) \pi}
$$

$x=m$ is a positive integer, each term but one of ht member vanishes and this one has the value Accordingly, $B_{0}(m)=B(m)$.
is formula (1) gives exactly the terms of the expan$(p+q)^{s}$ for positive integral values $x=m$. It may sidered an interpolation formula for values of x n the integral values.
shall be interested in two developments of this lation formula. The first is based on the developf $\log \theta(w)$ in powers of w, and the second on the ment in powers of p. The resulting types of deent are known as the Type A and Type B series, ively.

