VIII.—MEASURES OF DISPERSION, ETC. 141
CALCULATION OF THE STANDARD DEVIATION: Example iii.— Calculation
of the Standard Deviation of Stature of Male Adults in the British Isles
Jrom the figures of Table VI., p. 88. (Cf. p. 112 for the calculation of
mean alone, )
(1) (2) (3) (4) (5)
Deviation
Height. Frequency. from Product. Product
Inches. I Value 4. T= Fas
ez
57- 9 -10 20 200
58- 4 - 9 36 324
59- 14 - R 112 896
€- 41 - 287 2,009
ai. 83 - 498 2,988
Or 169 =~ 13 845 4,225
63— 394 - 1576 6,304
64- 669 - 2007 6,021
65— 990 = Bi 1980 3,960
66 1223 = i 1223 1.223
67- 1329 0 —- 8584 —
68 1230 3] : 1230 1,230
69- 1063 + 2 2126 4,252
70- 646 + 3 1938 5,814
71- 392 =f 1568 6,272
72- 202 + 1 1010 5,050
73- 79 + 474 2,844
7— a! + 7 : 224 1,568
yo— 1: : 128 1,024
7h- 45 405
» : 20 200
Tin) EJ +8763 56,809
From previous work, #/ — 4 =d= + ‘0209 class-intervals or inches,
=(/.8) _ 56809
= CER 66172.
o2=6"6172 — (0209)2
=66168.
.*. @=2'57 class-intervals or inches.
ii. the standard deviation is 1-24 per cent. ; six times this is 7-44
per cent., and a range from 0-75 to 8:19 per cent. includes all
but one observation out of 632. In Example iii. the standard
deviation 1s 2:57 in., six times this is 15°42 in, and a range from,
say, 60 in. to 754 in. includes all but some 37 out of 8585
individuals, z.e. about 99-6 per cent. This rough rule serves to
a AEQE :