Kap. VI. Der Kapitalzins.
schaft ein Zins berechnet werden müßte, und uns dadurch von der Un-
abhängigkeit der Existenz des Zinses von der speziellen Organisation
der Tauschwirtschaft überzeugen.
Da der Zins ein Preis ist, der wie alle anderen Preise in Geld be-
zahlt wird, ist‘ die Dimension des Zinses gleich M, also die Dimension
des Geldes. Die Dimension der Kapitaldisposition haben wir im vorigen
Paragraphen gleich dem Produkt MT gefunden, ,wo T die Dimension
der Zeit bezeichnet. Der Zinsfuß bezeichnet, wieviel bezahlt wird für
die Einheit der Kapitaldisposition, sagen wir für die Kapitaldisposition
von 100 Mark während eines Jahres, m. a. W. die Quote zwischen dem
für eine Kapitaldisposition bezahlten Zins und der Kapitaldisposition
selbst. Die Dimension des Zinsfußes ist demnach gleich SE = N
Der Zinsfuß ist also der reziproke Wert einer Zeit. Dieser
Satz darf nicht als ein bedeutungsloses Ergebnis einer mathematischen
Spekulation betrachtet werden. Er hat in der Tat eine wichtige Be-
deutung für die Zinstheorie, indem er ihr eine Anweisung über den
tieferen Charakter des Zinsphänomens gibt: es müssen Zeitmomente
wesentlich für den Zinsfuß bestimmend sein. Der Satz ist auch der
populären Auffassung nicht ganz fremd. Schon der gewöhnliche Aus-
druck des Zinsfußes „so und so viele Prozente pro Jahr“ drückt das
Verhältnis zwischen einer abstrakten Zahl und einer Zeit, also den
reziproken Wert einer Zeit aus. Noch deutlicher tritt dieser Charakter
des Zinsfußes zutage, wenn wir den Preis einer ewigen, fixierten
Rente in Betracht ziehen. Dieser Preis ist ein gewisses Vielfaches der
Rente, also die Rente für eine gewisse Zahl von Jahren, die Rente für
eine gewisse Zeit. Nennen wir diese Zeit t, die fixierte Rente r, so ist
der Preis k der Rente gleich tr. Welchen Zins hat nun der Rentekäufer
auf diese Kapitalanlage? Das Kapital ist k, der jährliche Ertrag
ist r. Der Zinsfuß also = = en Wir finden also, daß der Zinsfuß der
reziproke Wert einer Zeit ist, nämlich der reziproke Wert der Zahl von
Jahren, mit welcher die Jahresrente bei Berechnung des Kaufpreises
der Rente multipliziert wird. Der Zins kann somit ebensogut durch
diese Zahl von Jahren bestimmt werden. In älteren Zeiten, wo der
Rentenkauf oft die vorherrschende Form der Kapitalanlage war,
wurde diese Form für die Bestimmung des Zinses auch tatsächlich be-
nutzt. Die Engländer sprechen noch bei Landkäufen von so und so
vielen ;,years purchase‘‘, sogar im Aktienmarkt von „years purchase of
dividend‘“. Die Summe, die für ein absolut dauerhaftes Gut bezahlt
wird, ist nicht gleich dem Preis der Jahresnutzung multipliziert mit
einer ewigen Zeit, sondern entspricht der Nutzung für eine bestimmte
begrenzte Zeit. Diese Zeit, die der reziproke Wert des Zinsfußes ist,
192